

The information contained herein is the property of ITER Systems and is supplied without liability for errors or
omissions. No part may be reproduced except if a written permission is given by the company. The copyright and
the foregoing restriction on reproduction extend to all media in which this information may be embodied.

www.iter-systems.com

support@iter-systems.com

Reference ETD-2020

Classification Confidential

Version 8.04

Date 04/09/20

Copy number N/A

(if applicable)

Bathyswath File Formats

The information contained herein is the property of ITER Systems and is supplied without liability for errors or
omissions. No part may be reproduced except if a written permission is given by the company. The copyright and
the foregoing restriction on reproduction extend to all media in which this information may be embodied.

www.iter-systems.com

support@iter-systems.com

This page is left blank intentionally

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page ii ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Voids

10

9

8

7

6

5

4

3

2

1

 Section Notes

List of modifications

8.04 04/09/20
Technical review, parsed format
referred to separate document

 MFG

8.03 18/03/20 Technical review MFG

8.02 16/03/20 New Graphic chart 49 FBY

8.01 07/11/17 Small clarifications added MFG

8.00 21/06/17 Reformat and update

07.09 16/08/16 Section on example code for reading
files

07.08 09/08/16 Note on correction to SXP file reading

07.07 14/10/15 Corrected block number for
SONAR_DATA4

07.06 19/11/14 Added new raw data block,
SONAR_DATA4

07.05 04/11/14 Added SCP Bathyswath Position
Correction File

07.04 30/10/14 Added geoid and height offset files

07.03 04/06/14 Documented more interface formats

07.02 03/09/13 Reserved a set of block IDs for client use

07.01 22/08/13 Corrected description of ping position
in SXP

07.00 28/02/13 Bathyswath version, derived from
“SWATHplus File Formats” rev 6E

Version Date Modifications Pages Writer Checker

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page iii ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Table of contents

1 INTRODUCTION ... 1

1.1 REFERENCES .. 1
1.2 GLOSSARY & ACRONYMS .. 1
1.3 SCOPE .. 1
1.4 CONTEXT .. 1

2 FILE TYPES .. 2

3 DATA STORAGE AND TRANSMISSION .. 3

3.1 DISK FORMAT .. 3
3.2 FILE NAMES ... 3
3.3 ENDIANNESS .. 3
3.4 REAL-TIME TCP/IP AND UDP/IP DATA TRANSMISSION .. 3

4 BLOCK-ORIENTATED DATA FORMAT .. 3

4.1 GENERAL .. 3
4.2 FILE HEADER .. 3

4.2.1 Magic Numbers ... 4
4.2.2 File Header Data .. 4

4.3 DATA BLOCKS .. 4
4.3.1 Block Header ... 4
4.3.2 Block Types .. 4
4.3.3 Block Length .. 7

5 RAW DATA FILE BLOCKS ... 8

5.1 GENERAL .. 8
5.2 SONAR DATA BLOCK, “SONAR_DATA4” .. 8
5.3 SAMPLE DATA .. 10

5.3.2 Trigger ... 11
5.4 SONAR DATA BLOCK, OBSOLETE: “SONAR_DATA3” (CODE FROM MAY 2009) .. 11

5.4.1 Sample Data .. 13
5.4.2 Board type Identifiers .. 13
5.4.3 Transducer type Identifiers .. 13
5.4.4 Transducer Frequencies ... 14
5.4.5 FirstInScan Field ... 15
5.4.6 PPS settings & status bits .. 15
5.4.7 Ping Mode ... 15

5.5 SONAR DATA BLOCK, “SONAR_DATA2” , OBSOLETE: (V3 CODE TO MAY 08)... 15
5.6 SONAR DATA BLOCK, “SONAR_DATA” , OBSOLETE: (TO SEPT 2006) .. 17
5.7 OBSOLETE, NON-TIMESTAMPED COMPASS, MRU AND GPS DATA BLOCK FORMAT ... 18
5.8 TIMESTAMPED COMPASS, MRU AND GPS DATA BLOCK FORMAT ... 19
5.9 AUXILIARY PORT DATA .. 19
5.10 PHASE CALIBRATION OFFSETS .. 20
5.11 HARDWARE CONFIGURATION DATA BLOCK FORMAT ... 21

6 PROCESSED DATA FILE BLOCKS .. 22

6.1 GENERAL .. 22
6.2 XYZA DATA BLOCK FORMAT, SBP_XYZA_PING2 .. 22

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page iv ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

6.2.1 Note on Change from 17/10/15 .. 25
6.3 XYZA DATA BLOCK FORMAT, “SBP_XYZA_PING” (OBSOLETE) .. 25

7 PARSED DATA FILE BLOCKS .. 26

7.1 GENERAL .. 26

8 REAL-TIME COMMAND AND STATUS ... 27

8.1 REAL-TIME COMMAND AND STATUS DATA FORMATS .. 27
8.2 CONNECTION BETWEEN SWATH PROCESSORS ... 27

8.2.1 TEXT_DATA .. 27
8.2.2 SYSTEM_COMMAND_DATA .. 27
8.2.3 TIME_SYNCH_DATA ... 27

8.3 EXTERNAL SYSTEM INTERFACE, INPUTS ... 28
8.3.1 Swath Processor Options ... 28
8.3.2 ‘>’ System Commands ... 28
8.3.3 “$PMISS” Commands .. 29
8.3.4 $SWPCT Control Messages .. 29
8.3.5 $RMPOS vehicle position ... 30
8.3.6 $RMPO1 vehicle position with time stamp ... 30
8.3.7 $RMATT vehicle attitude ... 30
8.3.8 $RMZDA vehicle time .. 31

8.4 EXTERNAL SYSTEM INTERFACE, OUTPUTS .. 31
8.4.1 NMEA 0183 STATUS .. 31
8.4.2 JetSWATH .. 32
8.4.3 Bathyswath Configuration Messages .. 32
8.4.4 Simple Depth Out .. 32
8.4.5 NMEA DBT message .. 33
8.4.6 NMEA DPT message .. 33
8.4.7 NMEA DPT watercolumn message .. 33
8.4.8 NMEA information message ... 33
8.4.9 Attitude echo message .. 33

9 OTHER FILES ... 34

9.1 COVERAGE FILES... 34
9.1.1 General .. 34
9.1.2 Coverage Data Block, “COVRG_DATA”.. 34

10 HEIGHT AND POSITION CORRECTION FILES .. 35

10.1 SCG BATHYSWATH GEOID FILE ... 35
10.2 SCH BATHYSWATH HEIGHT OFFSET FILE ... 35
10.3 SCP BATHYSWATH POSITION CORRECTION FILE.. 36

11 NOTES .. 38

11.1 AXIS CONVENTIONS .. 38

12 CODE EXAMPLES .. 39

12.1 STEPS IN READING A FILE ... 39
12.1.1 Read the header .. 39
12.1.2 Read raw sonar data ... 39

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page v ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 1 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

1 INTRODUCTION

1.1 REFERENCES

Ref 1 ETD_2011, Bathyswath Parsed file format, “ETD_2011_Bathyswath_Parsed file
format.docx”

1.2 GLOSSARY & ACRONYMS

ACRONYMS DEFINITION

Bathyswath A seabed mapping sonar system. Also the name of the organisation
that builds and sells it

Swath The Bathyswath Swath Processor software application

SWATHplus The forerunner of the Bathyswath system

1.3 SCOPE

This document describes the format and interpretation of the data files written by the
Bathyswath and SWATHplus sonar systems.

There are several file types written by the software, all using the same format. See “File Types”
below.

These data files are written onto the PC’s hard disk by the sonar software and contain all the
information recorded by the system during the survey.

These data items can also be written or read by the Bathyswath software in real time over
communications links, including TCP/IP, UDP and serial ports.

1.4 CONTEXT

Bathyswath is a swath bathymetry sonar system. It is derived from the SWATHplus sonar
system, and uses the same file formats. In turn, SWATHplus was derived from the Submetrix
sonars, built by Submetrix Ltd.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 2 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

2 FILE TYPES

The following file types are described in detail in this document. They all use the Bathyswath
block-orientated format.

Type Format Suffix Contains Notes
See

Section

Raw sonar
data

binary .sxr All the data
collected by the
real-time system

Processed off-line to produce
one or more of the processed
data file types.

5

Coverage
maps

binary .swc Coverage data used
by the coverage plot
view

These files are a summary of the
data coverage, but contain no
sonar data, so are not commonly
read by third-party software.

Processed
sonar data

binary .sxp Processed data
derived from the
real-time software

These files have all corrections
applied, including: attitude,
position, tide, speed of sound.
Includes down-sampled position,
attitude and tide information.
Processed data files can be
created from raw data files or
parsed data files.

6

Parsed
data

binary .sxi Raw data, but
parsed into a format
that is easier for
third-party code to
interpret.

These files have none of the
above corrections applied.
Parsed data files can be created
from raw data files, but not the
other way around.

7

The following file types are used by the Bathyswath and SWATHplus software, but do not use
the block-orientated format and are not easily read by third-party software:

Type Format Suffix Contains

Swath
processor
session file

MFC “serialization” file .sxs The set-up of the Swath Processor program,
including the configuration of the sonar, input
port configurations, filter settings and view
window parameters

Grid file Binary format,
followed by MFC
“serialization” data

.sxg The grid data, in an open binary format, followed
by the set-up of the Grid Processor, including
filter settings and view window parameters

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 3 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

3 DATA STORAGE AND TRANSMISSION

3.1 DISK FORMAT

The data files are mostly written using a Microsoft Windows operating system and therefore
follow the conventions of that system in terms of file naming and low-level disk format.

The Bathyswath Linux software writes to the same format.

3.2 FILE NAMES

The file name is auto generated from date and time, or specified by the user during the
operation of the real-time sonar software. The extension is supplied by the software
according to the file type (see the table above).

3.3 ENDIANNESS

All Bathyswath and SWATHplus data is little-endian, i.e. in the natural 80x86 format with the
least significant byte at the lower address.

3.4 REAL-TIME TCP/IP AND UDP/IP DATA TRANSMISSION

Bathyswath software can output data in real time, and be controlled, over a TCP/IP or UDP/IP
interface (for example, between two applications running on the same computer or using an
Ethernet wired or wireless LAN). This interface uses the same block-orientated structure as the
data files.

The Bathyswath Swath Processor application can output the Parsed Data format (section
Error! Reference source not found.) and the Raw Data format (section 5) by TCP/IP or UDP/IP
in real time.

4 BLOCK-ORIENTATED DATA FORMAT

4.1 GENERAL

All the files listed in the first table of section 4.2.1 use the same block-orientated data format.
They can be read using the same software code, and the blocks that they contain may be
included in any of the files. The difference between these file types is therefore simply the
types of data block that they tend to contain. A file or data stream can, and sometimes does,
contain blocks from more than one of the groups of block types (raw, processed, parsed and
control).

Each file contains a file header block, followed by a series of data blocks.

Every block contains a header that identifies the block, followed by the length of the block.
Therefore, the reading software can identify the blocks that it wishes to read, and ignore and
skip over any other block type that it encounters. In this way, new blocks can be added to a
file type without needing to update the reading software.

4.2 FILE HEADER

A file header is used to identify each file type. It is formatted in the same way as data blocks,
but with a “magic number” as the block type. Each file type uses a different magic number.
See the table below.

However, the file header is for information only. It may not be present in some circumstances,
and the file may start immediately with data blocks.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 4 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

This magic number appears in the file as the sequence of bytes. The second 32-bit integer is
the block length, which is currently set to a value of 8 bytes. The content of the header block
is two 32-bit integers representing the software version number and the file format version
number.

The software version number is encoded as an integer, as follows: (Major version- Minor
version- Release- Build). For example, a version number of 3065601 means: Major version 3,
Minor version 06, Release 56, Build 01.

The file format version number is now obsolete: use the data block identifiers as a way of
checking file versions. For example, Swath version 3.7 writes “SONAR_DATA3” in its raw data
files, and version 3.6 writes “SONAR_DATA2” blocks. To allow an application to read both

kinds of file, add parsing code for both block types.

4.2.1 Magic Numbers

The file type magic numbers are:

File type Magic number identifier Magic number
(hexadecimal)

Raw sonar data SXR_HEADER_DATA 0xbad0bad0

Configuration data SXC_HEADER_DATA 0xf1c0f1c0

Coverage maps SWC_HEADER_DATA 0xc311c311

Processed sonar data SXP_HEADER_DATA 0x01df01df

Grid data SXG_HEADER_DATA 0xd1edede0

Parsed data SXI_HEADER_DATA 0x521d52d1

4.2.2 File Header Data

The data part of the file header block can be read as:
 struct {

 int swver; // Version of software used to record data file

 int fmtver; // Version of file format

 };

4.3 DATA BLOCKS

4.3.1 Block Header

Data is stored in blocks; each block has a header consisting of type and length.
{

 unsigned int blockType; // Block type code

 unsigned int blockLength; // Number of bytes in block, not incl. header

};

4.3.2 Block Types

Block types are 32-bit integer values encoded as follows.

These data blocks can occur in any Bathyswath block-encoded data files. They are also used in
TCP/IP and UDP communications between applications. However, blocks of a certain type are
most commonly found in particular files, and these file types are listed in the table below.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 5 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Type Value Notes Usual
File

Type

SONAR_DATA 0x00 Written by version 2 code Raw
(sxr)

SONAR_DATA2 0x16 Replacement raw data type, used in
version 3 code until May 08

sxr

SONAR_DATA3 0x17 Replacement raw data type, used in
version 3 code from May 08

sxr

SONAR_DATA4 0x19 Raw data from V2, complex (IQ)
samples.

sxr

COMPASS_DATA 0x01 Obsolete sxr

MRU_DATA 0x02 Obsolete sxr

GPS_DATA 0x03 Obsolete sxr

HWARE_DATA 0x04 Not used sxr

FILE_DATA 0x05 Not used sxr

GUI_DATA 0x06 Not used sxr

NET_DATA 0x07 Not used sxr

COMPASST_DATA 0x08 Timestamp + ASCII string sxr

MRUT_DATA 0x09 Timestamp + data from instrument, in
the instrument’s native format: may be
ASCII string or binary

sxr

GPST_DATA 0x0a Timestamp + data from instrument, in
the instrument’s native format: may be
ASCII string or binary

sxr

AUX1_DATA 0xb Auxiliary port data (obsolete) sxr

AUX2_DATA 0x0f Auxiliary port data, channel 2
(obsolete)

sxr

AUX2_DATA 0x0f Auxiliary port data sxr

AUX1T_DATA 0xc Auxiliary port data, Timestamp + ASCII
string

sxr

AUX2T_DATA 0x10 Auxiliary port data, Timestamp + ASCII
string

sxr

AUX3T_DATA 0x61 Auxiliary port data, Timestamp + ASCII
string

sxr

AUX4T_DATA 0x62 Auxiliary port data, Timestamp + ASCII
string

sxr

AUX5T_DATA 0x63 Auxiliary port data, Timestamp + ASCII
string

sxr

AUX6T_DATA 0x64 Auxiliary port data, Timestamp + ASCII
string

sxr

AUX7T_DATA 0x65 Auxiliary port data, Timestamp + ASCII
string

sxr

PHCAL_DATA 0x0d Phase calibration offsets sxr

CNF_SENSOR_CORR 0x20 Sensor corrections sxc

CNF_SENSOR_FILT 0x21 Sensor filters sxc

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 6 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Type Value Notes Usual
File

Type

CNF_SENSOR_INTERP 0x22 Sensor interpolation sxc

CNF_DERIVE_ATT 0x23 Attitude derivation sxc

CNF_ENVIR 0x24 Environment parameters sxc

CNF_DERIVE_POSN 0x25 Position derivation sxc

CNF_TOW_POSN 0x26 Tow offsets: towed vehicles sxc

CNF_POSN_OFFSETS 0x27 Offsets between sensors sxc

SBP_XYZA_PING 0x28 Processed ping data. Written by
version 3 code up to January 2010,
version 3.6.N

sxp

SBP_XYZA_PING2 0x52 Replacement processed ping data type.
Written by version 3.7 onwards.

sxp

COVRG_DATA 0x0e Coverage map data swc

TEXT_DATA 0x11 Text message TCP/IP

SYSTEM_COMMAND_DATA 0x12 Command from one system to another.
See §

TCP/IP

TIME_SYNCH_DATA 0x13 Time synchronisation between
systems

TCP/IP

PARSED_PING_DATA 0x29 Sonar data in parsed data sxi &
TCP/IP

PARSED_ATTITUDE 0x2b Attitude data in parsed data sxi &
TCP/IP

PARSED_POSITION_LL 0x2C Lat-long position data in parsed data sxi &
TCP/IP

PARSED_POSITION_EN 0x2d Easting-Northing position in parsed
data

sxi &
TCP/IP

PARSED_SVP 0x2e Speed of sound data in parsed data sxi &
TCP/IP

PARSED_ECHOSOUNDER 0x2f Echosounder data in parsed data sxi &
TCP/IP

PARSED_TIDE 0x30 Tide data in parsed data sxi &
TCP/IP

PARSED_AGDS 0x31 AGDS data in parsed data sxi &
TCP/IP

PARSED_AUX_STR 0x32 Auxiliary string in 'parsed' data sxi &
TCP/IP

PARSED_POSITION_LL_2 0x33 Lat-long position data in parsed data,
plus altitude

sxi &
TCP/IP

CMS_CMD 0x40 Commands in TCP/IP

CMS_STATUS 0x41 Status out TCP/IP

AUX_ATTPOS 0X42 Attitude and position TCP/IP

PARSED_FILTER_CMD 0x43 Controls for Parsed data filtering TCP/IP

SBP_PROJECTION 0x50 Information on the projection used in
processing (PLACEHOLDER)

sxp

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 7 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Type Value Notes Usual
File

Type

SBP_PROCESS_INFO 0x51 Information on the processes used in
processing (PLACEHOLDER)

sxp

Reserved 0x100 –
0x1ff

Reserved for client use

At present, only some of these block types are used. All other possible block types are
reserved for future expansion. Types COMPASS_DATA, MRU_DATA and GPS_DATA are

considered obsolete. Data blocks are concatenated with no further padding and in no
particular order (the header record is, however, always the first record in the file).

4.3.3 Block Length

Immediately following the block type is the block length, again as a 32-bit integer. The block
length is the number of bytes in the block, not including the header.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 8 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5 RAW DATA FILE BLOCKS

5.1 GENERAL

Raw data files are written with the file extension “SXR”. They contain the following data blocks.

Note that some of the data block types are now obsolete. For example, the current distribution
of Bathyswath software writes the sonar data in the “SONAR_DATA4” format. The
“SONAR_DATA2” and “SONAR_DATA” block types only need to be decoded if data files written
before 2009 need to be decoded.

5.2 SONAR DATA BLOCK, “SONAR_DATA4”

This format was implemented in Bathyswath code from November 2014, to support
Bathyswath V2.

The header is 71 bytes long, and the information is:

Byte
num

Num
bytes

Item Data
Type

Code Notes

0 4 Ping number unsigned
long int

pingNum Unique in each survey
session

4 1 Transducer
channel

unsigned
char

tdrChannel Up to 4 channels active at
any one instant (selected
from any number of
connected TEMs)

5 1 FPGA code
version

unsigned
char

fpgaIdent

6 1 Transducer type unsigned
char

tdrType See “Transducer type
Identifiers” below

7 1 Board type unsigned
char

boardType See “Board type
Identifiers” below

8 8 Board serial
number

unsigned
short int

boardIdent

16 4 Operating
frequency

float operatingFreq See “Transducer
Frequencies” below

20 1 Error byte unsigned
char

error 0 = no error

21 1 Calibration unsigned
char

calBit Set 1 if board is in
calibration mode

22 1 Transmit power unsigned
char

txPower As a percentage of
available voltage

23 2 Transmit pulse
length

short int txCycles In sonar cycles

25 2 Samples in ping short int rxSamples Number of samples in this
ping

27 4 Sample period float rxPeriod In seconds

31 1 Code for which
ADC channels are
enabled

unsigned
char

sidescanAdcEnable Bit code for four possible
channels, A, B, C, D

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 9 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Byte
num

Num
bytes

Item Data
Type

Code Notes

32 4 Acquisition time:
seconds

long int timeSecPC PC clock time

36 2 Acquisition time:
milliseconds

short int timeMsecPC PC clock time

38 4 Sonar clock time:
seconds

long int timeSecSonar TEM clock time

42 2 Sonar clock time:
milliseconds

short int timeMsecSonar TEM clock time

44 1 Position in
alternating and
simultaneous
scans

unsigned
char

firstInScan Used with alternating and
simultaneous
transmission: first =
always 1; alternating or
double-sided goes 1,0,1,0
…

45 1 PPS settings &
status bits

unsigned
char

m_PPS

Bitfield representing 1PPS
setting & status

46 1 Ping mode unsigned
char

m_pingMode

Enum indicating mode
(single/alt/sim), tx on/off,
and port/stbd

47 2 Trigger flags unsigned
short

m_triggerFlags 0: no triggers
See 5.3.2 below

49 2 PGA gain unsigned
short

m_pgagain Gain in the Programmable
Gain Attenuators

51 2 LNA gain unsigned
short

m_lnagain Gain in the Low Noise
Amplifiers

53 2 Base gain unsigned
short

m_basegain Gain in 1/100th db at the
end of the transmit pulse

55 2 Linear gain unsigned
short

m_lingain Amount in 1/100th db/ms
the gain rises linearly

57 2 Square gain unsigned
short

m_sqgain Amount in 1/100th
db/ms^2 the gain rises as
the square of time

59 4 SW gain float m_swgain Final gain in dB that is
applied in software

63 2 Decimation unsigned
short

m_RxDecimation Hardware sends 1 in n
samples; 1 = no
decimation

65 4 Filter BW float m_rxBandwidth Filter bandwidth in Hz

69 1 Preamp power unsigned
char

m_preampPowerOn 0 = power off, 1 = on

70 1 Sample type unsigned
char

m_sampleType 0: Phase Diff
1: 4-phase
2: IQ format

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 10 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.3 SAMPLE DATA

The header is followed by a number of sample information items. The number of items is given
by the “rxSamples” field of the sonar data header. The samples can be stored in one of
several types, depending on the requirement:

◼ Phase Difference format: phase differences between stave A and staves B, C and D are

stored. As used in previous versions, smallest size

◼ 4-phase format: the phase value measured on all four transducer staves is stored.

Slightly larger than Phase Difference, but allows some extra processing possibilities.

◼ IQ Format: the raw complex number streams from the Bathyswath-2 hardware are

stored. Considerably larger than the other types, but allows more debugging and

development possibilities.

The sample format can be selected by the operator, and is defined in the Sample type field:

5.3.1.1 Phase Difference Format

Sample type 0, 8 bytes per sample

Byte num Num bytes Item

0 1 Phase AB

1 1 Phase AC

2 1 Phase AD

3 1 Transducer number

4 2 Sample number

6 2 Amplitude

5.3.1.2 4-phase Format

Sample type 1, 12 bytes per sample

Byte num Num bytes Data Item

0 2 u short int Sample number

2 2 u short int Phase A

4 2 u short int Phase B

6 2 u short int Phase C

8 2 u short int Phase D

10 2 u short int Amplitude

5.3.1.3 IQ Format

Sample type 2; 34 bytes per sample

Byte num Num bytes Data Item

0 2 u short Sample number

2 4 float Stave A, real

6 4 float Stave A, imag

10 4 float Stave B, real

14 4 float Stave B, imag

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 11 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Byte num Num bytes Data Item

18 4 float Stave C, real

22 4 float Stave C, imag

26 4 float Stave D, real

30 4 float Stave D, imag

5.3.2 Trigger

The Trigger Flags parameter is encoded as a bit-field, as follows.

Bit Value if set Name Meaning

Input triggers

3 8 trigger_gpi1 trigger on GPI1 rising edge

4 16 trigger_gpi2 Trigger on GPI2 rising edge

5 32 trigger_rs485_1 Trigger on RS485 1 rising edge

6 64 trigger_rs485_2 Trigger on RS485 2 rising edge

7 128 trigger_invert Trigger on falling instead of rising edge

Output triggers

8 256 trigger_out_gpo1 Trigger on GPO1 rising edge

9 512 trigger_out_gpo2 Trigger on GPO2 rising edge

10 1024 trigger_out_rs485_1 Trigger on RS485 1 rising edge

11 2048 trigger_out_rs485_2 Trigger on RS485 2 rising edge

12 4096 trigger_out_invert Trigger on falling instead of rising edge

5.4 SONAR DATA BLOCK, OBSOLETE: “SONAR_DATA3” (CODE FROM MAY 2009)

This version is written by Bathyswath and SWATHplus code distributed after May 2009.

Data within the sonar data block consists of a header followed by the raw sonar samples. The
header is always 49 bytes long.

The header information is:

Byte
num

Num
bytes

Item Data
Type

Code Notes

0 4 Ping number long int pingNum Unique in each survey
session

4 1 Transducer
channel

unsigned
char

tdrChannel Up to 4 channels active at
any one instant (selected
from any number of
connected TEMs)

5 1 FPGA code version unsigned
char

fpgaIdent

6 1 Transducer type unsigned
char

tdrType See “Transducer type
Identifiers” below

7 1 Board type unsigned
char

boardType See “Board type
Identifiers” below

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 12 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Byte
num

Num
bytes

Item Data
Type

Code Notes

8 8 Board identifier
string

char
string

boardIdent In effect, the serial
number. Often only the
first two bytes populated

16 4 Operating
frequency

float operatingFreq See “Transducer
Frequencies” below

20 4 Hardware Gain float analogueGain Not used on current
boards

24 1 Phase clock full
scale

unsigned
char

noClocksIn360 256 in most boards

25 1 Error byte unsigned
char

error 0 = no error

26 1 Calibration unsigned
char

calBit Set 1 if board is in
calibration mode

27 1 Transmit power
code

unsigned
char

txPower 0 = low power,
15 = max power

28 2 Transmit pulse
length

short int txCycles In sonar cycles

30 2 Samples in ping short int rxSamples Number of samples in this
ping

32 1 Interval between
samples

unsigned
char

rxPeriod In microseconds

33 1 Code for which
ADC channels are
enabled

unsigned
char

sidescanAdcEnable Bit code for four possible
channels, A, B, C, D

34 4 Acquisition time:
seconds

long int timeSecPC PC clock time

38 2 Acquisition time:
milliseconds

short int timeMsecPC PC clock time

40 4 Sonar clock time:
seconds

long int timeSecSonar TEM clock time

44 2 Sonar clock time:
milliseconds

short int timeMsecSonar TEM clock time

46 1 Position in
alternating and
simultaneous
scans

unsigned
char

firstInScan Used with alternating and
simultaneous
transmission: first =
always 1; alternating or
double-sided goes 1,0,1,0
…

47 1 PPS settings &
status bits

unsigned
char

m_PPS

Bitfield representing 1PPS
setting & status

48 1 Ping mode unsigned
char

m_pingMode

Enum indicating mode
(single/alt/sim), tx on/off,
and port/stbd

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 13 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.4.1 Sample Data

The header is followed by a number of sample information items. Each item is 8 bytes long.
The number of items is given by the “rxSamples” field of the sonar data header, or by
reading the block size, subtracting the size of the sonar data header (49), and dividing by the
size of the sample item (8).

The sample information is:

Byte num Num bytes Item

0 1 Phase AB

1 1 Phase AC

2 1 Phase AD

3 1 Transducer number

4 2 Sample number

6 2 Amplitude

Note: the phase has the opposite sign in the new SONAR_DATA2 format to that in
SONAR_DATA

5.4.2 Board type Identifiers

These codes are used to identify board types.

Value Name Description Notes

1 BRD_TYPE_117_Q0 Quicklogic based 64 way
DIN41612 interface (117kHz only)

Development only:
shouldn't find in the
field

2 BRD_TYPE_117 Quicklogic based 37 way D
connector interface 117KHz

3 BRD_TYPE_ISA 16-Bit ISA Board Not a TEM. Not used in
USB TEM systems.

4 BRD_TYPE_234 Quicklogic based 37 way D
connector interface 234KHz

5 BRD_TYPE_117_A Altera based 37 way D connector
interface 117KHz

6 BRD_TYPE_234_A Altera based 37 way D connector
interface 234KHz

7 BRD_TYPE_468_A Altera based 37 way D connector
interface 468KHz

8 BRD_TYPE_USB Altera based, USB interface TEM,
468KHz

9 BRD_TYPE_MK4 Altera based, USB interface TEM,
initially for TOBI (freq. in a
different register)

10 BRD_TYPE_V2_A First version of the V2 TEMs

5.4.3 Transducer type Identifiers

These codes are used to identify the sonar frequency of the transducers. They correspond to
a frequency code that is hard-wired into each transducer’s connector.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 14 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Value Name Nominal
Freq. /kHz

Actual
Frequency

/Hz

Bit
Code

Notes

10 TXD_TYPE_117 117 117187.5 "1010"

5 TXD_TYPE_234 234 234375 "0101"

13 TXD_TYPE_468 468 468750 "1101"

15 TXD_TYPE_NO_CONN - - "1111" No transducer is
connected to the TEM

16 TXD_TYPE_117_V2 117 Bathyswath V2 type

17 TXD_TYPE_234_V2 234 Bathyswath V2 type

18 TXD_TYPE_468_V2 468 Bathyswath V2 type

0 TXD_TYPE_DEFAULT - - - No transducer type specified
or auto-detected, so the
transducer type is assumed
to match the sonar
frequency

Note that the hard-wired transducer codes are being removed from the later Bathyswath
hardware, so this field cannot be assumed to be provided in later systems.

5.4.4 Transducer Frequencies

These are binary divisions of 30 MHz. The fixed frequencies, used in versions before
Bathyswath-2, are:

Name Value

TXD_FREQ_117 117.1875e3

TXD_FREQ_234 234.375e3

TXD_FREQ_468 468.750e3

Bathyswath-2 can have the frequency set differently, for example to limit cross-talk between
port and starboard sides.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 15 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.4.5 FirstInScan Field

◼ In both simultaneous mode and alternating mode, with a two-TEM system (port and
starboard), the file consists of a series of ping records. These will alternate port-
starboard-port-starboard. In an ISA TEM system, channel 1, nominally the port TEM,
will have firstInScan set to 1, and the starboard TEM firstInScan will be set 0. In
SWATHplus and Bathyswath-1 USB systems, the "first" TEM is not necessarily the port
one, as there is no guarantee which one the USB driver sees first.

◼ If you have more than two TEMs fitted and working at the same time (alternating or
simultaneous), then just one of the TEMs will have firstInScan set.

◼ In single-sided mode, firstInScan is always set.

5.4.6 PPS settings & status bits

Information about PPS (pulse per second) is stored in a bit-field, as follows:

Bit Name Meaning

0 PPS_DISABLE_BIT 1PPS is enabled / 1PPS is disabled

1 PPS_EDGE_BIT 1PPS acts on rising edge

2 PPS_ACKNOWLEDGE_BIT TEM has not received 1PPS / TEM has received 1PPS

3 PPS_PERIOD_ERROR_BIT PPS period matches TEM clock / PPS period does not
match TEM clock

4 PPS_USE_PC_TIME Ignore TEM time altogether and use the PC clock instead

5.4.7 Ping Mode

The operational mode of the sonar is recorded as an enumerated value (enum), as follows:

Value Name Meaning

0 SONAR_SEL_OFF Not used

1 SONAR_SEL_SINGLE Single-sided pinging

2 SONAR_SEL_ALT Alternating pinging

3 SONAR_SEL_SIM Simultaneous pinging

5.5 SONAR DATA BLOCK, “SONAR_DATA2” , OBSOLETE: (V3 CODE TO MAY 08)

This version is written by version 3 SWATHplus code, distributed between September 2006
and May 2008.

Only the ping header is different from SONAR_DATA3: the sonar samples are the same.

Byte
num

Num
bytes

Item Data
Type

Code Notes

0 2 Ping number short int pingNum Unique in each survey
session

3 1 Transducer
channel

unsigned
char

tdrChannel Up to 4 channels
active at any one
instant (selected from
any number of
connected TEMs)

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 16 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Byte
num

Num
bytes

Item Data
Type

Code Notes

 1 FPGA code
version

unsigned
char

fpgaIdent

 1 Transducer type unsigned
char

tdrType See “Transducer type
Identifiers” below

 1 Board type unsigned
char

boardType See “Board type
Identifiers” below

 8 Board identifier
string

char
string

boardIdent In effect, the serial
number. Often only
the first two bytes
populated

 4 Operating
frequency

float operatingFreq See “Transducer
Frequencies” below

 4 Hardware Gain float analogueGain Not used on current
boards

 1 Phase clock full
scale

unsigned
char

noClocksIn360 256 in most boards

 1 Error byte unsigned
char

error 0 = no error

 1 Calibration unsigned
char

calBit Set 1 if board is in
calibration mode

 1 Transmit power
code

unsigned
char

txPower

 2 Transmit pulse
length

short int txCycles In sonar cycles

 2 Samples in ping short int rxSamples Number of samples in
this ping

 1 Interval
between
samples

unsigned
char

rxPeriod In microseconds

 1 Code for which
ADC channels
are enabled

unsigned
char

sidescanAdcEnable Bit code for four
possible channels, A,
B, C, D

 4 Time in seconds long int timeSec

 2 Millisecond
component of
time

short int timeMsec

 1 Position in
alternating and
simultaneous
scans

unsigned
char

firstInScan Used with alternating
and simultaneous
transmission: first =
always 1; alternating
or double-sided goes
1,0,1,0 …

 2 Spare bytes spare For expansion

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 17 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.6 SONAR DATA BLOCK, “SONAR_DATA” , OBSOLETE: (TO SEPT 2006)

This version is written by version 2 SWATHplus code, distributed before September 2006.

Data within the sonar data block consists of a header followed by the raw sonar samples. The
header is always 160 bytes long – eight 32-bit integers followed by 16 8-byte structures. The
following code defines the structure of a sonar header:

const int MAX_TX = 15;

const int MAX_TX_SLOTS = MAX_TX + 1;

class TxBoardInfo {

public:

 unsigned char tdcrtype; // Register 0 bits [3:0]

 unsigned char ctrlreg; // Register 5

 unsigned short int txcycles; // Register 6 * 8

 unsigned short int rxsamps; // Register 7 * 256

 unsigned char rxrate; // Register 8

 unsigned char analch; // Register 9

 TxBoardInfo ();

};

struct BathyIO {

 int version;

 int ping;

 int txok;

 int active;

 int sec;

 int usec;

 int spare1;

 int spare2;

 TxBoardInfo regs[MAX_TX_SLOTS];

};

The BathyIO structure contains a version number, ping number, transmit OK flag, active
channel number and a timestamp. The version number is currently always set to one. The ping
number increments as pings are generated. The transmit OK flag is currently always set to one.
The active channel will be set to one for a port side ping and two for a starboard ping. The
timestamp is represented as two integers: seconds since 1970 and microseconds since that
second. The two spare fields are currently set to hexadecimal constants.

The TxBoardInfo class holds copies of the register values that were used to generate the
ping.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 18 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Following the sonar header is the block of raw sonar samples. There are as many raw sonar
samples as the sonar generated during the ping, as controlled by the ‘Number of Receive
Samples’ register. Each sample has the following format:

class BathySample {

public:

 unsigned char ab;

 unsigned char ac;

 unsigned char ad;

 unsigned char txno;

 unsigned char samp0;

 unsigned char samp1;

 unsigned char anal0;

 unsigned char anal1;

 BathySample ();

};

The three bytes ab, ac and ad represent the phase differences between staves A-B, A-C and
A-D. The txno byte represents the transducer channel number along with some flags. The
pair of bytes samp0 and samp1 forms a 16-bit value for the sample number (zero-based).

The pair of bytes anal0 and anal1 form a 12-bit signed value for the analogue signal

amplitude.

The bytes samp0 and anal0 are the least-significant bytes, while samp1 and anal1 are the

most-significant. To obtain the timestamp for a given sample, multiply the sample number by
the sample rate, in microseconds. The sample rate is available as one of the register values
mentioned earlier. This timestamp represents the round-trip time from sonar transmit to
sample reception. The analogue value represents the received sonar signal amplitude at the
moment of sampling. Minimum amplitude has a value of -4096 and maximum +4095.

5.7 OBSOLETE, NON-TIMESTAMPED COMPASS, MRU AND GPS DATA BLOCK FORMAT

All the non-timestamped string-type data blocks share the same basic format. The ASCII string
simply follows the type/length header. The string is followed by a timestamp in ASCII format,
consisting of seconds and microseconds since 1970.

This string-based timestamp was a temporary fix and has been replaced by a binary-coded
timestamp in the current version of this format. These records are no longer generated.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 19 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.8 TIMESTAMPED COMPASS, MRU AND GPS DATA BLOCK FORMAT

All the timestamped string-type data blocks share the same basic format. The header is
followed immediately by an eight-byte timestamp, organised as two four-byte integers. The
first integer represents seconds since 1970, and the second integer represents microseconds
since that second. The data string follows immediately after the timestamp, but is not null-
terminated. Therefore, the length of the data block is the length of the data string plus eight.
The data string is in the native format of the instrument that sent the data, and could be ASCII
text or binary format.

Blocks using this style are: COMPASST_DATA (heading from a compass or dial-antenna GPS),
MRUT_DATA (attitude), and GPST_DATA (position).

Byte
num

Num
bytes

Encoding Item Notes

0 8 See §Error!
Reference source
not found..

Time Time of receiving the message. All 8-byte
time codes are encoded the same: see
§Error! Reference source not found..

8 N Unsigned char Data
string

Native format of the instrument sending
the data

5.9 AUXILIARY PORT DATA

The Swath Processor program supports eight “auxiliary” inputs. These inputs can be configured
to receive data from a range of serial input devices. The data from these channels are stored
in the time-stamped data types AUX1T_DATA (for the first channel), AUX2T_DATA (for the
second), etc. There is currently no way of knowing which data type has been stored in these
auxiliary ports direct from the raw data files. The Swath Processor session file (sxs) stores the
configuration of the ports.

Each data item consists of an 8-byte timestamp, followed an ASCII string. The data in the string
will depend on the device that supplied the data.

Data that may be present includes:

Type Sxs Code Value

Raw ASCII data FORMAT_AUX_RAW 1

Position data AUX_INPUT_TYPE_POSITION 2

Heading data AUX_INPUT_TYPE_HEADING 3

Motion sensor data AUX_INPUT_TYPE_MRU 4

Speed of sound data AUX_INPUT_TYPE_SVP 5

Echosounder data FORMAT_AUX_ECHOSOUNDER 6

Tide data AUX_INPUT_TYPE_TIDE 7

Acoustic Ground Discrimination System
(e.g. ECHOplus)

AUX_INPUT_TYPE_AGDS 8

Commands between systems AUX_INPUT_TYPE_COMMAND 9

Pressure sensor AUX_INPUT_TYPE_PRESSURE 10

Cable out sensor AUX_INPUT_TYPE_CABLE_OUT 11

CTD sensor AUX_INPUT_TYPE_CTD 12

GPS AUX_INPUT_TYPE_GPS 13

Magnetometer AUX_INPUT_TYPE_MAGNETOMETER 14

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 20 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Type Sxs Code Value

Light Sensor AUX_INPUT_TYPE_LIGHT_SENSOR 15

5.10 PHASE CALIBRATION OFFSETS

The phase calibration block, PHCAL_DATA, contains a set of numerical offsets that need to be
added to every phase value in the raw data file before phase to angle conversion is done.

This block is used for SWATHplus and Bathyswath-1 systems. It is not used in Bathyswath-2
systems.

The data area in the block consists of an array of C++ structures:

 CPhaseOffsets m_phaseOffsets[MAX_TX_SLOTS];

Where CphaseOffsets is defined:

class CPhaseOffsets

{

public:

 CPhaseOffsets();

 ~CPhaseOffsets();

 BOOL m_doOffset; // Flag: apply offsets or not

 // The offsets

 char m_AB;

 char m_AC;

 char m_AD;

};

and

 MAX_TX_SLOTS = 16 in release 2 code

 MAX_TX_SLOTS = 5 in release 3 code.

Therefore, the data area should contain 16 instances of at least four bytes each: offset (or not)
flag, then three phase offsets. However, with word alignment and function pointers, this block
has a data length of 40 in the R3 code. Most standard survey systems will have the port offsets
in array[0] and the starboard offsets in array[1]. Note that transducers are numbered from ‘1’,
so transducer ‘i’ will need offsets applied from array[i-1].

Offsets should be added before conversions. Note that the phases should be stored as

“unsigned char”. This will make sure that the phase “wraps around” (past 255 = 360

phase) when the offset is added.

 for (i = 0; i < number; i++)

 {

 samp[i].m_phaseb_a += m_phaseCorrAB;

 samp[i].m_phasec_a += m_phaseCorrAC;

 samp[i].m_phased_a += m_phaseCorrAD;

 }

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 21 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

5.11 HARDWARE CONFIGURATION DATA BLOCK FORMAT

A block type number is reserved for hardware configuration data, but no records of this type
are generated at present.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 22 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

6 PROCESSED DATA FILE BLOCKS

6.1 GENERAL

Processed data files are written with the file extension “SXP”. They contain the following data
blocks.

These items write out memory images of C++ classes, as created by software compiled in
Microsoft Visual Studio. These memory images may have padding between some objects, to
align data objects to word boundaries, so caution may be needed when reading these objects
with code created by other compilers, languages and operating systems.

The default Windows packing size of 8 bytes is used.

6.2 XYZA DATA BLOCK FORMAT, SBP_XYZA_PING2

This format is used in the processed data files written by Bathyswath and SWATHplus code
distributed after January 2010. It contains all the processed data for a single ping. It is similar
to the formats used internally by the Bathyswath software, but the structures are defined
separately in order to keep control of file size.

Following the block header, there are three kinds of element in the data block:

◼ Ping data (class cXYZAPing),
◼ Transducer data header (class cXYZATxer),
◼ Bathymetric data samples (class cXYZAPoint).

Each block contains the data from one transducer. If the sonar is operated in “simultaneous”
mode, with both transducers firing at the same time, then two separate “SBP_XYZA_PING2”
blocks will be generated, with the same time stamp.

Each block therefore contains one each of the data types, in order:

◼ Ping data,
◼ Transducer data header,
◼ Bathy data array.

The ping data is as follows:
class cXYZAPing

{

 char m_lineName[MAX_LINENAME_LEN]; // line name

 unsigned long m_pingNum; // ping number

 double m_time; // UNIX time of start of ping

int m_noTxers; // Number of transducers used (always 1)

 CPosn m_posn; // position of transducer

 double m_roll; // roll at start of ping

 double m_pitch; // pitch at start of ping

 double m_heading; // heading at start of ping

 double m_height; // height of transducer at start of ping

 double m_tide; // tide height applied

 double m_sos; // speed of sound applied (mean value)

};

const int MAX_LINENAME_LEN = 40;

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 23 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

The sign conventions are explained in section 11.1. Height is the height below datum
(measured positive down), and combines the heave and datum offset, which could come from
GPS height or tide, for example.

Tide is measured with the usual marine convention, positive up.

The member m_noTxers is used to determine the number of transducer blocks and data

arrays that follow.

The transducer data is:
// Data for transducer

class cXYZATxer

{

public:

 unsigned char m_txNo; // transducer identifier

 unsigned char m_txStat; // tx status

 unsigned char m_txPower;

 short int m_analogGain; // analog gain value

 unsigned char m_noStaves; // no. of staves on tx

 unsigned char m_txInfo[MAX_TX_INFO]; // board type/revision/serial

number

 unsigned char m_freq; // tx frequency (identifier code)

 double m_frequency; // frequency in hertz

 short int m_trnsTime; // transmit time/ number of cycles

 short int m_recvTime; // receive time/ number of samples

 unsigned char m_sampRate; // receive sample rate micro-seconds per

sample

 // sample data

 int m_noSampsOrig; // no. of samples read in real time

 int m_noSampsFile; // no. of samples in the processed file

 int m_noSampSlots; // no. of sample slots

 Cposn m_posn; // position of transducer (E,N)

 CposnOffset m_posoffset; // position offset of this transducer from

survey centre

};

Sub-definitions:
// Position

class Cposn

{

 double E; // easting

 double N; // northing

};

// General offset from survey centre

class CPosnOffset

{

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 24 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

 double height;

 double forward;

 double starboard;

 double azimuth;

 double elevation;

 double skew;

 double time;

 double water_depth;

double pitch;

};

const int MAX_TX_INFO = 4;

The number of samples stored in the array that follows is m_noSampsFile. The number of
samples stored in the original array was m_noSampsOrig, but some of these samples may have
been rejected by filters and not written to the file.

This data array contains the three-dimensional position (xyz) and amplitude derived from the
sonar data. The data points are not ordered in any particular way, but they will usually be
stored in the order of the time in which the underlying phase data was collected.

Each point is encoded as follows:
class cXYZAPoint

{

 int m_sampNum; // sample number

 double m_x; // x position (northing)

 double m_y; // y position (easting)

 float m_z; // depth (positive down)

 unsigned short int m_amp; // raw amplitude (16 bits)

 unsigned short int m_procAmp; // processed amplitude (16 bits)

 unsigned char m_status; // extra information

 double m_TPU; // uncertainty

};

The m_status field gives information about the status of the data point. A value of zero
indicates that the point has been rejected by a filter.

Note that the three-dimensional xyz axis set is:

x Northing

y Easting

z Depth, positive down

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 25 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

6.2.1 Note on Change from 17/10/15

On 16/10/15, CPosnOffset was accidentally changed to add "bool inverted", on 16/10/15.
Software with this change was released as R3.10.14.1. This added 8 bytes to the size of
cXYZATxer. Because this change was not intentional, the block type was not changed. This
error was corrected on 09/08/16, R3.11.15.1, to restore the block size. To deal with SXP files
written between those times, it is necessary to read the software version from the block
header (see section 4.2.2) and use that to control the size of the offset to the start of the data
items:
int offset = sizeof(cXYZATxer);

const int sizeChange = 8;

if ((m_swver_read >= 3101401) && (m_swver_read <= 3111501)

 offset += sizeChange;

pointArray = (cXYZAPoint*)((char*)txerfile + offset); // Array of data points

6.3 XYZA DATA BLOCK FORMAT, “SBP_XYZA_PING” (OBSOLETE)

This format is used in the processed data files written by SWATHplus code distributed before
January 2010.

The ping data element is the same as in SBP_XYZA_PING2.

Within the transducer data the position offset sub-element contains one fewer fields:
// General offset from survey centre

class CposnOffset

{

 double height;

 double forward;

 double starboard;

 double azimuth;

 double elevation;

 double skew;

 double time;

 double water_depth;

};

The individual data points each contain one fewer fields:
class cXYZAPoint

{

 int m_sampNum; // sample number

 double m_x; // x position (northing)

 double m_y; // y position (easting)

 float m_z; // depth (positive down)

 unsigned short int m_amp; // raw amplitude (16 bits)

 unsigned short int m_procAmp; // processed amplitude (16 bits)

 unsigned char m_status; // extra information

};

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 26 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

7 PARSED DATA FILE BLOCKS

7.1 GENERAL

Parsed data files are written with the file extension “SXI”. They use the same block-orientated
format as the other Bathyswath files.

The Parsed data blocks are described in “ETD_2011, Bathyswath Parsed file format” [Ref 1].

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 27 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

8 REAL-TIME COMMAND AND STATUS

8.1 REAL-TIME COMMAND AND STATUS DATA FORMATS

There are essentially two classes of command and status connections used with the Swath
Processor program:

1. Connection between two Swath Processor programs. This might be used if data is
collected in a remote location and processed and visualised on another computer. This
connection uses the same data blocks as for the raw data file, plus the following
command types: TEXT_DATA, SYSTEM_COMMAND_DATA and TIME_SYNCH_DATA.

2. Connection between Bathyswath and an external system.

▪ Several different interface formats are available; these have been developed
to interface to specific platforms, and the software responds to any of them.
They include:

• Data blocks: CMS_CMD, CMS_STATUS and AUX_ATTPOS; see section
8.3

• ‘>’ System Commands: see section 8.3.2

• NMEA 0183 style messages: see 8.3.3 and 8.3.4

8.2 CONNECTION BETWEEN SWATH PROCESSORS

8.2.1 TEXT_DATA

The data payload is a character string (the length is defined by the block header). The receiving
program simply displays the text in the Status view window.

8.2.2 SYSTEM_COMMAND_DATA

A single integer follows the header, defined as follows:

Type Value Notes

SCOMMAND_SHUTDOWN 0 Sent from one process to the other,
indicating that it is shutting down. It
causes the other process to shut
down its TCP/IP socket.

SCOMMAND_DATARESET 1 The idea is to cause the other
process to reset its data buffers. It is
disabled in software at the time of
writing.

SCOMMAND_KILL_APP 2 Causes the receiving application to
shut down.

8.2.3 TIME_SYNCH_DATA

The data payload is a Windows SYSTEMTIME structure. It causes the receiving application to
set the computer’s clock to the time transmitted to it.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 28 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

8.3 EXTERNAL SYSTEM INTERFACE, INPUTS

8.3.1 Swath Processor Options

Bathyswath can be controlled by sending command strings to an Aux port, on a serial or UDP
connection. Options are:

Type Format Format name Section

Serial Control SEA ‘>’ commands ‘>’ System Commands 8.3.2

NMEA 0183-type1 $PMISS Commands 8.3.3

$SWPCT Control Messages 8.3.4

$RMPOS vehicle position 8.3.5

$RMPO1 vehicle position with time stamp 8.3.6

$RMATT vehicle attitude 8.3.7

$RMZDA vehicle time 8.3.8

8.3.2 ‘>’ System Commands

Swath can be controlled by control codes passed to it over the Aux ports.

The codes are simple ASCII text messages. Each message must start with a ‘>’ character.

Available codes are:

Command Meaning

>SNR ON Sonar control: start pinging

>SNR OFF Sonar control: stop pinging

>SNR PWR power Sonar control: set power to specified number, 1 to 10. E.g. “>SNR
PWR 8”

>SNR RNG range Sonar control: set ping range in metres

>SNR PLS pulselength Sonar control: set pulse length in cycles, 2 to 250. E.g. “>SNR PLS
100”

>SNR PRF pingrate Sonar control: set ping repetition frequency in Hz, 1 to 30. E.g.
“>SNR PRF 20”

>SNR SMP samples per
ping

Sonar control: set the number of samples per ping, 512 to 8192.
E.g. “>SNR SMP 4096”

>FILE ON Start writing to raw file

>FILE OFF Stop writing to raw file

>FILE CLOSE Close raw file

>FILE PAUSE Pause writing to raw file

>FILE OPEN filename Create a new raw file, with name given by “filename”. E.g. “>FILE
OPEN line3”.

>SESSION LOAD
filename

Load a session file with the specified name

>SESSION SAVE
filename

Save the session file with the specified name

1 The system responds to any of the message types that arrive

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 29 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

8.3.3 “$PMISS” Commands

Bathyswath responds to mission state messages. These are headed with the string “$PMISS”,
and are handled by Bathyswath as described in the following table. The mission state messages
are all encoded using the “NMEA0183” format. These have a leading ‘$’ character, followed by
an identifying string (“PMISS”), and terminating with a star (‘*’) and two-digit hexadecimal
checksum (signified by “CK” in the table below).

Message Typically Sent Bathyswath Action Notes

$PMISS,MISSION_START At power-up,
when vehicle
starts to receive
status messages
from Bathyswath

Selected by the
Bathyswath “session
file” settings. Choose
from some, all or none
of: Turn on TEMs, Start
receive, Start transmit,
Open & write to file.

Not used if
“SURVEY_” and
“LINE_”
messages are
used

$PMISS,SURVEY_START When the vehicle
reaches the
survey area

Turn on electronics
(TEMs). This increases
the Bathyswath hotel
load from about 8W to
30W

$PMISS,LINE_START at the start of
each survey line

Start a new data file,
named according to
time

$PMISS,LINE_END at the end of
each survey line

Close the data file

$PMISS,SURVEY_END when the vehicle
finishes the
survey, and
wants to start a
transit without
shutting down
Bathyswath
completely

Turn off the sonar
electronics, dropping
the hotel load to about
8W

$PMISS,MISSION_END When vehicle has
finished with
Bathyswath
altogether

User settable, similar to
MISSION_START. Can be
used to shut down the
single board computer
operating system, thus
reducing power further

Once the OS has
been shut down,
the only way to
re-start it is to
power-cycle the
Bathyswath
bottle

8.3.4 $SWPCT Control Messages

These messages provide finer control of the Bathyswath system than is possible with the
Mission State Messages; see above. They also use the “NMEA0183” message structure.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 30 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Message Function

$SWPCT,TEM,ON,*CK\r\n Apply power to the sonar electronics (TEMs)

$SWPCT,TEM,OFF,*CK\r\n Remove power from the sonar electronics
(TEMs)

$SWPCT,SNR,ON,*CK\r\n Sonar control: start pinging

$SWPCT,SNR,OFF,*CK\r\n Sonar control: stop pinging

$SWPCT,SNR,PWR, power,*CK\r\n Sonar control: set power to specified
number, 0 to 100. e.g. $SWPCT,SNR,PWR,
8,CK\r\n”

$SWPCT,SNR,RNG, range,*CK\r\n Sonar control: set ping range in metres

$SWPCT,SNR,PLS, range,*CK\r\n Sonar control: set pulse length in cycles, 2 to
250.
e.g. $SWPCT,SNR, RNG, 100,CK\r\n”

$SWPCT,SNR,PRF, pingrate,*CK\r\n Sonar control: set ping repetition frequency
in Hz, 1 to 30.

$SWPCT,SNR,SMP,samples per
ping,*CK\r\n

Sonar control: set the number of samples per
ping, 512 to 8192.

$SWPCT,FILE,ON,*CK\r\n Start writing to raw file

$SWPCT,FILE,OFF,*CK\r\n Stop writing to raw file

$SWPCT,FILE,CLOSE,*CK\r\n Close raw file

$SWPCT,FILE,PAUSE,*CK\r\n Pause writing to raw file

$SWPCT,FILE,OPEN,filename,*CK\r\n Create a new raw file, with name given by
“filename”.

$SWPCT,FILE,FLDR,pathname,*CK\r\n Save raw files to the folder path specified

$SWPCT,SESSION,LOAD,filename,*CK\r\n Load a session file with the specified name

$SWPCT,SESSION,SAVE,filename,*CK\r\n Save the session file with the specified name

$SWPCT,TTMODE,MASTER,*CK\r\n Set the Transmit Trigger mode to “Master”

$SWPCT,TTMODE,SLAVE,*CK\r\n Set the Transmit Trigger mode to “Slave”

$SWPCT,TTMODE,NULL,*CK\r\n Set the Transmit Trigger mode to “Null”

8.3.5 $RMPOS vehicle position

Latitude-longitude vehicle position, e.g.

$RMPOS,041N31.0592,070W41.9350,H89.9,D2.2,A20.1*0A\r\n

8.3.6 $RMPO1 vehicle position with time stamp

Latitude-longitude vehicle position with time stamp, e.g.

$RMPO1,16435.598,04,02,2008,41N40.366,070W38.799,H324.5,D9.2,A0.0*76

8.3.7 $RMATT vehicle attitude

Vehicle attitude, e.g.:

$RMATT,164310.434,04,02,2008,R-0.59,P-13.22,D11.64,H328.69,*66

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 31 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

8.3.8 $RMZDA vehicle time

Vehicle time, e.g.:

$RMZDA,090414.250,08,02,2008,00,00*51

8.4 EXTERNAL SYSTEM INTERFACE, OUTPUTS

Outputs from Swath Processor Aux ports are:

Type Format Format name Section

Status NMEA 0183 NMEA 0183 STATUS 8.4.1

JetSWATH JetSWATH 8.4.2

Configuration Bathyswath Bathyswath Configuration
Messages

8.4.3

Depth Simple Simple Depth Out 8.4.4

NMEA 0183 DBT NMEA DBT message 8.4.5

NMEA 0183 DPT NMEA DPT message 8.4.6

NMEA 0183 DPT - water col NMEA DPT watercolumn message 8.4.7

Info n/a NMEA information message 8.4.8

Attitude n/a Attitude echo message 8.4.9

8.4.1 NMEA 0183 STATUS

This is a message in the style of NMEA 0183 messages, made up as follows:

$P1MSG,<mode_message>,<flag><status_message>*<CS><cr><lf>

where :

<CS> is an NMEA 0183-style checksum.

<mode_message> is one of the following :

Message Meaning

idle The sonar is not pinging

active_rx_only The sonar is operating, but not transmitting

active_tx The sonar is operating and transmitting, but not writing data to disk

active_tx_write The sonar is operating and transmitting, and writing data to disk

<status_message> is made up of a string of as many of the following as apply (and so is empty
if there are no errors)

Message Meaning

Tder_ There is a problem with a transducer

Txer_ There is a problem with a sonar transmitter

TEM_ There is a problem with the transducer electronics module

Temp_ There is a temperature problem

Leak_ There is a water leek (in Bathyswath systems that are fitted with a leak sensor)

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 32 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Message Meaning

Disk_ There is a problem with the internal data storage disk

Sonar_ There is a problem with the sonar electronics

Att_ There is a problem with the attitude sensor or the compass

Posn_ There is a problem with the position sensor

Aux_ There is a problem with an auxiliary sensor

The flag can be one of the following:

Flag Meaning

<blank> All OK

! Error: an error state has been detected

@ Abort: a fault state has been detected that could endanger the vehicle (e.g. a
water leak): abort the mission

8.4.2 JetSWATH

This is a message that supports the obsolete JetSWATH systems, and so is no longer used.

8.4.3 Bathyswath Configuration Messages

These are messages in the style of NMEA 0183 messages. A separate message is sent for each
state. The messages are made up as follows:

$ SWCNF,<message>,*<CS><cr><lf>

where :

<CS> is an NMEA 0183-style checksum

<message> is one of the following

Message Meaning

TEM,ON The TEM is powered on

TEM,OFF The TEM is powered off

SNR,ON The sonar is active and transmit is enabled

SNR,OFF The sonar is not active or transmit is disabled

SNR,PWR,<power> Shows the sonar power level

SNR,RNG,<range> Shows the sonar range in metres

SNR,PLS,<pulse> Shows the sonar pulse length in cycles

SNR,PRF,<prf> Shows the sonar ping repetition frequency in Hz

SNR,SMP,<samples> Shows the number of cycles in each ping

SNR,FILE,<ON/OFF> Writing to file is enabled or disabled

SNR,FILE,<OPEN/CLOSED/PAUSED> The raw data output file is open, closed or paused

SESSION,OPEN,<name> A session file (.sxs) with the given name is open

8.4.4 Simple Depth Out

The nadir depth is written out in metres, followed by carriage return & line feed.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 33 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

8.4.5 NMEA DBT message

The nadir depth is written out as a standard NMEA 1083 DBT message, with talker ID set to
“BS”.

8.4.6 NMEA DPT message

The nadir depth and the depth under the water surface of the transducers are written out as
a standard NMEA 1083 DPT message, with talker ID set to “BS”.

8.4.7 NMEA DPT watercolumn message

The nadir depth plus the depth under the water surface of the transducers, and the depth
under the water surface of the transducers, are written out as a standard NMEA 1083 DPT
message, with talker ID set to “BS”.

8.4.8 NMEA information message

General information messages sent as NMEA 0183 messages. The messages are made up as
follows:

$SWINFO,<message>,*<CS><cr><lf>

The messages sent are a selected subset of the messages that appear in the Swath Processor
Status window.

8.4.9 Attitude echo message

If this is enabled, then any attitude information that is input to the Attitude port is echoed out
to an Aux port, in whatever format the data was input.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 34 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

9 OTHER FILES

9.1 COVERAGE FILES

Swath Processor writes coverage files when it writes raw data (sxr) files. These files summarise
the location and extent of each sonar ping that has been recorded. Coverage files can also be
re-generated from raw data files if required.

9.1.1 General

Coverage files are written with the file extension “SXC”. They contain the following data blocks.

9.1.2 Coverage Data Block, “COVRG_DATA”

The block ID for coverage data blocks is “0x0e”.

The data payload is a C++ class:
class CCoveragePoint

{

public:

 CPosn m_boatPos; // Position of boat

 CCovTdxr m_tdxr; // Transducer samples

 e_posType m_corrPosType; // lat/lon or E/N

 short int m_chanNo; // transducer channel number

};

With:
class CPosn

{

public:

 double E; // easting or longitude

 double N; // northing or latitude

};

class CCovTdxr

{

public:

 BOOL m_valid; // This is a valid sample

 CPosn m_near; // Near point

 CPosn m_far; // Far point

};

enum e_posType

{

 POS_LL, // latitude-longitude

 POS_EN // easting-northing

};

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 35 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

10 HEIGHT AND POSITION CORRECTION FILES

Height correction files are used to correct the datum height (usually from GPS position), given
the position at a point. These corrections are usually made to account for the geoid: the lumpy
shape of the Earth relative to the smooth ovoid that is implied by the ellipsoid definition that
was used for the position projection from latitude and longitude to easting and northing. These
corrections take the form of a table of offsets, and the offset at a given point is looked up from
the table using the position of the point. The table can be defined against latitude and
longitude positions, in which case it is called a “geoid file”, or against easting and northing
projected positions, in which case it is called a “height offset file”.

A number of “standard” formats can be read into the Bathyswath software, including BIN,
MNT, GEO, and KTD. We have also defined our own formats, in case the user finds it necessary
to create a new offset file.

10.1 SCG BATHYSWATH GEOID FILE

This file defines height offsets (usually from the geoid), relative to latitude and longitude
position.

It is ASCII format, so is human-readable, and can be created and edited with a text editor or
spreadsheet program. Fields can be separated with any “whitespace” character, such as space
or tab. The length of each field is not important. Decimal fractions are separated with a point,
e.g. one-and-a-half is shown as “1.5”.

Field number Item Encoded as

0 Number of latitude values Integer number

1 Number of longitude values Integer number

2 Latitude of SW corner degrees and decimal degrees

3 Longitude of SW corner degrees and decimal degrees

4 Step in latitude between samples degrees and decimal degrees

5 Step in longitude between samples degrees and decimal degrees

This is followed by the table itself, consisting of exactly “Number of latitude values” x “Number of

longitude values” samples, each being a correction to the height, positive for an upwards
correction. (Note that heights in Bathyswath are usually negative downwards – deeper –
unless otherwise stated; in this case the “normal” convention for geoid corrections is used
instead of the Bathyswath one).

It may be convenient for readability to place a newline character after every row of values, but
this is not necessary for the software to parse the file correctly.

Note also that, when viewed in a text editor, this table is upside-down relative to the location
on the map: if arranged with a newline after each longitude row, then the south-west corner
(the first value in the table) appears in the top-left position.

10.2 SCH BATHYSWATH HEIGHT OFFSET FILE

This file defines height offsets (usually from the geoid), relative to easting and northing
position.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 36 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

It is ASCII format, so is human-readable, and can be created and edited with a text editor or
spreadsheet program. Fields can be separated with any “whitespace” character, such as space
or tab. The length of each field is not important. Decimal fractions are separated with a point,
e.g. one-and-a-half is shown as “1.5”.

It is very similar to the geoid file, but defines easting and northing instead of latitude and
longitude (but not in that order).

Field number Item Encoded as

0 Number of easting values Integer number

1 Number of northing values Integer number

2 Easting of SW corner metres and decimal metres

3 Northing of SW corner metres and decimal metres

4 Step in easting between samples metres and decimal metres

5 Step in northing between samples metres and decimal metres

This is followed by the table itself, consisting of exactly “Number of easting values” x “Number of

northing values” samples, each being a correction to the height, positive for an upwards
correction. (Note that heights in Bathyswath are usually negative downwards – deeper –
unless otherwise stated; in this case the “normal” convention for geoid corrections is used
instead of the Bathyswath one).

It may be convenient for readability to place a newline character after every row of values, but
this is not necessary for the software to parse the file correctly.

Note also that, when viewed in a text editor, this table is upside-down relative to the location
on the map: if arranged with a newline after each longitude row, then the south-west corner
(the first value in the table) appears in the top-left position.

10.3 SCP BATHYSWATH POSITION CORRECTION FILE

This file defines position offsets relative to easting and northing position.

It is ASCII format, so is human-readable, and can be created and edited with a text editor or
spreadsheet program. Fields can be separated with any “whitespace” character, such as space
or tab. The length of each field is not important. Decimal fractions are separated with a point,
e.g. one-and-a-half is shown as “1.5”.

It is very similar to the height offset file, but specifies easting and northing offsets on each line
instead of height.

Field number Item Encoded as

0 Number of easting values Integer number

1 Number of northing values Integer number

2 Easting of SW corner metres and decimal metres

3 Northing of SW corner metres and decimal metres

4 Step in easting between samples metres and decimal metres

5 Step in northing between samples metres and decimal metres

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 37 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

This is followed by the table itself, consisting of exactly “Number of easting values” x “Number of

northing values” offsets, each consisting of two numbers:

Field number Item Encoded as

0 Easting offset Decimal number

1 Northing offset Decimal number

It may be convenient for readability to place a newline character after every row of values, but
this is not necessary for the software to parse the file correctly.

Note also that, when viewed in a text editor, this table is upside-down relative to the location
on the map: if arranged with a newline after each longitude row, then the south-west corner
(the first value in the table) appears in the top-left position.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 38 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

11 NOTES

11.1 AXIS CONVENTIONS

All angles obey the right-hand screw rule about the appropriate axis. Headings obey this rule
about the z-axis, whilst at the same time maintaining the usual geographic convention, that is,
positive going clockwise, measured from North.

Depth is positive for down.

This means that:

◼ Heading is positive clockwise, looking down.

◼ Roll is positive for starboard down.

◼ Pitch is positive for nose up.

The SWATHplus software uses the Euler angle convention for roll and pitch, rather than the
horizontal-plane convention. This means that roll is measured about the body’s own forward-
aft axis, rather than relative to the horizontal plane.

Tide values are given in the usual marine convention, positive up.

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 39 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

12 CODE EXAMPLES

This section gives example code for reading Bathyswath data files.

12.1 STEPS IN READING A FILE

To read a data file:

◼ Read a block header, as two 32-bit integers,

◼ Read in the rest of the block, using the block length from the header,

◼ Use the block type from the header to decide which decode to use. Ignore the block if

that type is not needed,

◼ Read the next header.

12.1.1 Read the header
 struct{

 unsigned int m_blockType; // Block type code

 unsigned int m_blockLength; // Number of bytes in block, not incl.

header

 } CBlockHeader;

For example:
 switch (blockType)

 {

 case SONAR_DATA4:

 // read raw sonar data

 break;

 case MRU_DATA:

 // read attitude data

 break;

 … etc.

 }

12.1.2 Read raw sonar data

Read the header of the SONAR_DATA4block
{

 m_pingNum = GetUInt(pBuffer);

 m_tdrChannel = (int) GetUChar(pBuffer);

 m_fpgaIdent = (int) GetUChar(pBuffer);

 m_tdrType = (int) GetUChar(pBuffer);

 m_boardType = (int) GetUChar(pBuffer);

 m_boardIdent = GetLongLong(pBuffer);

 m_operatingFreq = GetFloat(pBuffer);

 m_FPGAerror = (int) GetUChar(pBuffer);

 m_calBit = GetBOOL(pBuffer);

 m_txPower = (int) GetUChar(pBuffer);

 m_txCycles = (int) GetShort(pBuffer);

 m_rxSamples = (unsigned int) GetUShort(pBuffer);

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 40 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

 m_rxPeriod = GetFloat(pBuffer);

 m_sidescanAdcEnable = (int) GetUChar(pBuffer);

 m_timeSecPC = (int) GetInt(pBuffer);

 m_timeMsecPC = (int) GetUShort(pBuffer);

 m_timeSecSonar = (int) GetUInt(pBuffer);

 m_timeMsecSonar = (int) GetUShort(pBuffer);

 m_firstInScan = (int) GetUChar(pBuffer);

 m_PPS = GetUChar(pBuffer);

 m_pingMode = (int) GetUChar(pBuffer);

 m_triggerFlags = GetUShort(pBuffer);

 m_pgagain = GetUShort(pBuffer);

 m_lnagain = GetUShort(pBuffer);

 m_basegain = GetUShort(pBuffer);

 m_lingain = GetUShort(pBuffer);

 m_sqgain = GetUShort(pBuffer);

 m_swgain = GetFloat(pBuffer);

 m_RxDecimation = GetUShort(pBuffer);

 m_rxBandwidth = GetFloat(pBuffer);

 m_preampPowerOn = GetBool(pBuffer);

 m_sampleType = (PingHeader::eSampleType) *pBuffer++;

} // 73 bytes

inline unsigned char GetUChar(unsigned char *&pBuffer)

{unsigned char value = *((unsigned char*) pBuffer);

pBuffer+= sizeof(unsigned char); return value;}

inline unsigned short GetUShort(unsigned char *&pBuffer)

{unsigned short value = *((unsigned short*) pBuffer);

pBuffer+= sizeof(unsigned short); return value;}

inline short GetShort(unsigned char *&pBuffer)

{short value = *((short*) pBuffer);

pBuffer+= sizeof(short); return value;}

inline unsigned int GetUInt(unsigned char *&pBuffer)

{unsigned int value = *((unsigned int*) pBuffer);

pBuffer+= sizeof(unsigned int); return value;}

inline int GetInt(unsigned char *&pBuffer)

{int value = *((int*) pBuffer);

pBuffer+= sizeof(int); return value;}

inline long long GetLongLong(unsigned char *&pBuffer)

{long long value = *((long long*) pBuffer);

pBuffer+= sizeof(long long); return value;}

inline float GetFloat(unsigned char *&pBuffer)

{float value = *((float*) pBuffer);

Buffer+= sizeof(float); return value;}

inline double GetDouble(unsigned char *&pBuffer)

{double value = *((double*) pBuffer);

pBuffer+= sizeof(double); return value;}

inline bool GetBool(unsigned char *&pBuffer)

{unsigned char value = GetUChar(pBuffer);

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 41 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

return (value = 0 ? false : true); pBuffer++;}

inline BOOL GetBOOL(unsigned char *&pBuffer)

{BOOL value = GetUChar(pBuffer);

return (value = 0 ? FALSE : TRUE); pBuffer++;}

The type of data samples is one of several types, according to m_sampleType in the header.

 switch (m_header.m_sampleType)

 {

 case PingHeader::eFormatPhaseDiff:

 memcpy(m_samples, pBuffer+samplesOffset,

m_header.m_rxSamples * sizeof(BathySample));

 break;

 case PingHeader::eFormat4Phase:

 {

 unsigned char* buffPos = pBuffer+samplesOffset;

 for (unsigned int i = 0; i < m_header.m_rxSamples; i++)

 {

 m_4phSamples[i].ReadBuffer(buffPos);

 buffPos += BathySample4Ph_SIZE;

 }

 }

 break;

 case PingHeader::eFormatIQ:

 {

 unsigned char* buffPos = pBuffer+samplesOffset;

 for (unsigned int i = 0; i < m_header.m_rxSamples; i++)

 {

 m_IQsamples[i].ReadBuffer(buffPos);

 buffPos += BathySampleIQ_SIZE;

 }

 }

 break;

 }

void BathySample4Ph::ReadBuffer(unsigned char* pBuffer)

{

 READ_SHORT(pBuffer, m_sampNo);

 READ_SHORT(pBuffer, m_phaseA);

 READ_SHORT(pBuffer, m_phaseB);

 READ_SHORT(pBuffer, m_phaseC);

 READ_SHORT(pBuffer, m_phaseD);

 READ_SHORT(pBuffer, m_amp);

}

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 42 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

// Read from memory

void BathySampleIQ::ReadBuffer(unsigned char* pBuffer)

{

 READ_SHORT(pBuffer, m_sampNo);

 READ_FLOAT(pBuffer, m_a_r);

 READ_FLOAT(pBuffer, m_a_i);

 READ_FLOAT(pBuffer, m_b_r);

 READ_FLOAT(pBuffer, m_b_i);

 READ_FLOAT(pBuffer, m_c_r);

 READ_FLOAT(pBuffer, m_c_i);

 READ_FLOAT(pBuffer, m_d_r);

 READ_FLOAT(pBuffer, m_d_i);

}

The information contained on this sheet is subject to restrictions listed on the cover page of the document

Version 8.04 – 04/09/20 Page 43 ETD-2020

Confidential

www.iter-systems.com

support@iter-systems.com

Annex A - Previous Document Change Record

The change history of this document before 2010 is as follows.

See the top of this document for recent change history.

This section is provided to help with the decoding of very old data files.

Issue2 Date Reason for Change and Issue

0.1 Original

2.0 Changes to the format to include timestamps on strings, as
well as some minor typographical corrections

3.0 21 May 1998 Adds the file header record

3.2 18 August 1998 Adds the xyza format

3.3 25 August 1998 Additions to xyza format

3.4 26 August 1998 Config and processed data file information added

3.5 06 April 1999 cXYZAPoint corrected in line with released code

3.6 27 April 1999 Note added that file header may be absent

3.7 29 April 1999 Array sizes defined

3.8 05 May 1999 Clarification of easting and northing

3.9 07 May 1999 Name changed of samp counts in txer data

3.91 03 June 1999 File header length corrected

4.0 19 December 2003 Changed to SEA SWATHplus format

4.1 18 February 2004 Clarified some sign conventions

4.2 21 October 2005 Added phase offset notes

5 A July 2006 Formal SEA format

5 B November 2006 Version 3 software data format added

5 C November 2006 Aux ports documented. Other data block types identified.

5 D December 2006 TCP/IP and Com Port Command and Status command
formats clarified.

5 E February 2007 Added Parsed Data format

5 F June 2007 Corrections to interpretation notes for angle in the parsed
data format

5 G July 2007 SXI filtering information

5 K December 2007 Parsed Data Filter information updated

5L March 2008 Format of MRUT_DATA clarified

5M May 2008 CMS_CMD modified to add new filter settings

5N September 2009 Updates to content of Processed ping data.

6A January 2010 New format, updated appearance for clarity

6B January 2010 Corrected error in description of old SXP format. Note on
class memory images added.

6C February 2010 Added extra filter controls in CMS_CMD

2 Early versions used Submetrix issue format

	1 INTRODUCTION
	1.1 References
	1.2 Glossary & acronyms
	1.3 Scope
	1.4 Context

	2 File Types
	3 Data Storage and Transmission
	3.1 Disk Format
	3.2 File Names
	3.3 Endianness
	3.4 Real-Time TCP/IP and UDP/IP Data Transmission

	4 Block-Orientated Data Format
	4.1 General
	4.2 File Header
	4.2.1 Magic Numbers
	4.2.2 File Header Data

	4.3 Data Blocks
	4.3.1 Block Header
	4.3.2 Block Types
	4.3.3 Block Length

	5 Raw Data File Blocks
	5.1 General
	5.2 Sonar Data Block, “SONAR_DATA4”
	5.3 Sample Data
	5.3.1.1 Phase Difference Format
	5.3.1.2 4-phase Format
	5.3.1.3 IQ Format
	5.3.2 Trigger

	5.4 Sonar Data Block, Obsolete: “SONAR_DATA3” (Code from May 2009)
	5.4.1 Sample Data
	5.4.2 Board type Identifiers
	5.4.3 Transducer type Identifiers
	5.4.4 Transducer Frequencies
	5.4.5 FirstInScan Field
	5.4.6 PPS settings & status bits
	5.4.7 Ping Mode

	5.5 Sonar Data Block, “SONAR_DATA2” , Obsolete: (v3 code to May 08)
	5.6 Sonar Data Block, “SONAR_DATA” , Obsolete: (to Sept 2006)
	5.7 Obsolete, non-timestamped Compass, MRU and GPS Data Block Format
	5.8 Timestamped Compass, MRU and GPS Data Block Format
	5.9 Auxiliary Port Data
	5.10 Phase Calibration offsets
	5.11 Hardware Configuration Data Block Format

	6 Processed Data File Blocks
	6.1 General
	6.2 XYZA Data Block Format, SBP_XYZA_PING2
	6.2.1 Note on Change from 17/10/15

	6.3 XYZA Data Block Format, “SBP_XYZA_PING” (Obsolete)

	7 Parsed Data File Blocks
	7.1 General

	8 Real-time Command and Status
	8.1 Real-time Command and Status Data Formats
	8.2 Connection between Swath Processors
	8.2.1 TEXT_DATA
	8.2.2 SYSTEM_COMMAND_DATA
	8.2.3 TIME_SYNCH_DATA

	8.3 External System Interface, Inputs
	8.3.1 Swath Processor Options
	8.3.2 ‘>’ System Commands
	8.3.3 “$PMISS” Commands
	8.3.4 $SWPCT Control Messages
	8.3.5 $RMPOS vehicle position
	8.3.6 $RMPO1 vehicle position with time stamp
	8.3.7 $RMATT vehicle attitude
	8.3.8 $RMZDA vehicle time

	8.4 External System Interface, Outputs
	8.4.1 NMEA 0183 STATUS
	8.4.2 JetSWATH
	8.4.3 Bathyswath Configuration Messages
	8.4.4 Simple Depth Out
	8.4.5 NMEA DBT message
	8.4.6 NMEA DPT message
	8.4.7 NMEA DPT watercolumn message
	8.4.8 NMEA information message
	8.4.9 Attitude echo message

	9 Other Files
	9.1 Coverage Files
	9.1.1 General
	9.1.2 Coverage Data Block, “COVRG_DATA”

	10 Height and Position Correction Files
	10.1 SCG Bathyswath Geoid File
	10.2 SCH Bathyswath Height Offset File
	10.3 SCP Bathyswath Position Correction File

	11 Notes
	11.1 Axis Conventions

	12 Code Examples
	12.1 Steps in Reading a File
	12.1.1 Read the header
	12.1.2 Read raw sonar data

